On an infinite integral linear group

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AN INTRODUCTION TO THE THEORY OF DIFFERENTIABLE STRUCTURES ON INFINITE INTEGRAL DOMAINS

A special class of differentiable functions on an infinite integral domain which is not a field is introduced. Some facts about these functions are established and the special case of z is studied in more detail

متن کامل

On C0-Group of Linear Operators

In this paper we consider C0-group of unitary operators on a Hilbert C*-module E. In particular we show that if A?L(E) be a C*-algebra including K(E) and ?t a C0-group of *-automorphisms on A, such that there is x?E with =1 and ?t (?x,x) = ?x,x t?R, then there is a C0-group ut of unitaries in L(E) such that ?t(a) = ut a ut*.

متن کامل

On Infinite Dimensional Linear Spaces.

Let X be an abstract linear space and let X* be the space of all linear functionals defined on X. Associated with each norm defined on X is its "norm set," the subspace L of X* consisting of those linear functionals which are continuous with respect to it. Our starting point is the observation that two norms in X define the same topology if and only if their norm sets are identical. This observ...

متن کامل

An introduction to harmonic analysis on the infinite symmetric group

The aim of the present survey paper is to provide an accessible introduction to a new chapter of representation theory — harmonic analysis for noncommutative groups with infinite–dimensional dual space. I omitted detailed proofs but tried to explain the main ideas of the theory and its connections with other fields. The fact that irreducible representations of the groups in question depend on i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Australian Mathematical Society

سال: 1971

ISSN: 0004-9727,1755-1633

DOI: 10.1017/s0004972700046670